農(nóng)業(yè)技術(shù)包含信息獲取、信息管理和決策及變量作業(yè)3個部分,其中如何方便、快速、準(zhǔn)確、可靠地獲取作物信息,已經(jīng)成為實施農(nóng)業(yè)為關(guān)鍵的問題。養(yǎng)分生理指標(biāo)作為作物內(nèi)部指標(biāo),與作物生長的狀態(tài)以及產(chǎn)量密切相關(guān)。如氮、磷、鉀、鋅等營養(yǎng)元素與作物生長狀態(tài)密切相關(guān),缺少任何一種元素都可能會引起植物的不正常生長;而氮、葉綠素含量、冠層參數(shù)等指標(biāo)與作物的產(chǎn)量相關(guān),可以作為作物產(chǎn)量預(yù)估指標(biāo);當(dāng)作物受到環(huán)境脅迫時,其生理信息和外部形態(tài)都會發(fā)生改變,如受到病蟲害侵染時,作物會作出應(yīng)激反應(yīng)產(chǎn)生酶以及某些產(chǎn)物。因此,作物當(dāng)中一些特定的酶含量、氨基酸含量、蛋白含量的變化反映了作物在逆境中的狀況,可以作為作物逆境脅迫響應(yīng)指標(biāo)。目前隨著光譜傳感技術(shù)和圖像處理分析技術(shù)的日益發(fā)展,無人機與光譜軟硬件的結(jié)合也越發(fā)純熟。在農(nóng)業(yè)、林業(yè)、資源、生態(tài)、環(huán)境保護等領(lǐng)域都得到了廣泛應(yīng)用。
作物的光譜特征是環(huán)境因子(生物因子和非生物因子)影響的結(jié)果。利用光譜和成像技術(shù)快速、無損地獲取作物的養(yǎng)分生理信息,間接預(yù)估作物的產(chǎn)量以及監(jiān)測作物長勢與逆境脅迫響應(yīng),有助于實現(xiàn)農(nóng)業(yè)化、數(shù)字化、信息化以及智能化管理作業(yè)。光譜成像技術(shù)將光譜分析技術(shù)和成像技術(shù)結(jié)合起來,它既能獲取樣本的光譜信息也能獲取空間信息,并且能同時獲取樣本的物理特性和化學(xué)特性。光譜圖像通常是三維(3D)的,由二維的空間信息和一維的光譜信息組成。根據(jù)波段的多少,光譜成像技術(shù)可以分為多光譜成像技術(shù)和高光譜成像技術(shù)。通常來說,高光譜成像技術(shù)獲取的圖像由大量連續(xù)的波段(幾十個或幾百個)組成,而多光譜成像技術(shù)的圖像由一系列離散的波段(一般少于10個)組成。
高光譜圖像的光譜分辨率更高,能夠更好地獲取樣本的信息,對于監(jiān)測作物信息精度更高。然而,由于高光譜圖像通常攜帶有大量的信息,因此需要對數(shù)據(jù)進行降維,去除冗余信息。高光譜成像技術(shù)也有它的局限性,如成本高,處理速度慢等。因此,高光譜成像技術(shù)主要用于基礎(chǔ)研究。相比高光譜成像技術(shù),多光譜成像技術(shù)更適合田間的大面積監(jiān)測。
植被指數(shù)
植被指數(shù)是一類具有一定生化意義的不同波段光譜值得組合,通常有比值植被指數(shù)、線性組合植被指數(shù)、修正植被指數(shù)、差值植被指數(shù)等。不同波段組合的植被指數(shù)對于不同指標(biāo)預(yù)測效果不同。在農(nóng)業(yè)上,基于光譜技術(shù)檢測作物生理指數(shù)的波段范圍一般在400~2 500 nm之間,涉及到色素(葉綠素、類胡蘿卜素等)、氮、水分等吸收和葉片細胞的內(nèi)部結(jié)構(gòu)。在400~740 nm 可見光波段,葉綠素在480、650、670~680、740 nm 處有吸收峰,類胡蘿卜素在 420、425、440、450、470、480 nm均有吸收峰,葉黃素在 425、445、475 nm 有吸收峰。而在 740~1 300 nm 近紅外波段由于健康的葉肉細胞反射作用,其反射率急劇升高;作物水分的吸收峰主要集中在970、1 450、1 944 nm 處。因此當(dāng)作物受到脅迫作用時,相應(yīng)的氮、色素、酶等發(fā)生變化,通過應(yīng)用各種植被指數(shù)監(jiān)測這些生理指標(biāo)變化,可判斷作物脅迫情況、生長狀況以及產(chǎn)量情況。然而,多光譜只有區(qū)區(qū)幾個波段,雖然能構(gòu)建一些植被指數(shù),但是構(gòu)建的植被指數(shù)未必能反映作物的生理生化信息及長勢狀態(tài)。高光譜則不同,其數(shù)百上千個波段信息,即使同一植被指數(shù),也能有成千上萬種組合,而這么多種組合以及這么多的植被指數(shù),總能找到適合監(jiān)測作物的生理生化信息及長勢狀態(tài)的敏感指數(shù)。
養(yǎng)分指標(biāo)檢測
氮和葉綠素類含量是作物重要的養(yǎng)分指標(biāo),與作物產(chǎn)量密切相關(guān)?;诠庾V和成像技術(shù)作物養(yǎng)分信息的獲取根據(jù)是否直接利用光譜信息可分為基于直接光譜信息作物養(yǎng)分信息快速獲取(如逐步多元回歸、偏小二乘、權(quán)重系數(shù)、支持向量機等)和基于植被指數(shù)作物養(yǎng)分信息快速獲取?;谥苯庸庾V信息作物養(yǎng)分獲取即通過原始光譜處理建模檢測作物養(yǎng)分信息,而基于植被指數(shù)的養(yǎng)分檢測是通過建立植被指數(shù)與養(yǎng)分的模型進行分析。
水分脅迫監(jiān)測
通過光譜和成像技術(shù)對作物水分脅迫信息進行快速獲取,有利于作物肥水管理的化控制。研究者張曉東等應(yīng)用了多光譜成像技術(shù)和高光譜技術(shù)研究水分脅迫下油菜葉片的含水率?;诟吖庾V建立的模型預(yù)測結(jié)果優(yōu)于基于多光譜成像建立的模型。
病害脅迫監(jiān)測
早期作物病蟲害診斷對科學(xué)防治病蟲害,保證作物產(chǎn)量具有重要意義。目前,病蟲害診斷可分為直接方法和間接方法。直接方向主要是以化學(xué)分析方法為主,包含聚合酶鏈反應(yīng)、DNA 陣列等方法。而間接方法主要是以電子鼻、光譜儀等為主的傳感器技術(shù)。光譜和成像技術(shù)是一種病蟲害診斷的快速、無損、有效檢測技術(shù)。當(dāng)作物受到病蟲害脅迫時,作物內(nèi)部的生理指標(biāo)以及外部形態(tài)均會發(fā)生變化,在光譜和成像技術(shù)上以光譜響應(yīng)與紋理、顏色等特征呈現(xiàn)。因此,光譜和成像技術(shù)通過分析某一波段或者多個波段光譜以及作物圖像信息對作物病蟲害脅迫作出診斷。此外,用于診斷病蟲害的植被指數(shù)主要有歸一化植被指數(shù)、綠色歸一化植被指數(shù)、比值植被指數(shù)、光化學(xué)反射、葉片水分植被指數(shù)1、水分指數(shù)、水分波段指數(shù)等。
6 綜述
盡管多光譜、高光譜技術(shù)已經(jīng)成為農(nóng)業(yè)信息獲取中關(guān)鍵技術(shù),然而仍存在一些問題。
1)基于光譜成像技術(shù)作物指標(biāo)檢測模型的穩(wěn)健性、傳遞性不高。由于受到作物生理因素(品種、生長階段等)、環(huán)境因素(光照、土壤、溫度、降水等)、檢測參數(shù)、田間管理因素(灌溉、施肥等)、指標(biāo)之間互相干擾等因素影響,作物指標(biāo)模型很難涵蓋適用所有情況。
2)針對作物脅迫水平的診斷仍存在問題。由于作物病蟲害、雜草、水分等脅迫沒有統(tǒng)一的評價指標(biāo),很難建立定量診斷模型。
農(nóng)作物生理信息的感知和獲取,已經(jīng)在農(nóng)業(yè)生產(chǎn)、決策和作物生長狀態(tài)的檢測中發(fā)揮了重要的作用,已成為農(nóng)業(yè)和農(nóng)業(yè)信息化發(fā)展的重要內(nèi)容。在農(nóng)業(yè)中,快速無損地獲取農(nóng)作物養(yǎng)分生理信息(氮、葉綠素類、蛋白類、酶類等)仍是農(nóng)業(yè)生產(chǎn)的管理和作業(yè)研究的重點和難點,相關(guān)方法和技術(shù)的突破,對實現(xiàn)農(nóng)業(yè)的化、數(shù)字化、信息化和智能化管理和作業(yè)具有重要意義。
萊森光學(xué)(深圳)有限公司是一家提供光機電一體化集成解決方案的高科技公司,我們專注于光譜傳感和光電應(yīng)用系統(tǒng)的研發(fā)、生產(chǎn)和銷售。
版權(quán)聲明:本文內(nèi)容由互聯(lián)網(wǎng)用戶自發(fā)貢獻,該文觀點僅代表作者本人。本站僅提供信息存儲空間服務(wù),不擁有所有權(quán),不承擔(dān)相關(guān)法律責(zé)任。如發(fā)現(xiàn)本站有涉嫌抄襲侵權(quán)/違法違規(guī)的內(nèi)容, 請發(fā)送郵件至2161241530@qq.com 舉報,一經(jīng)查實,本站將立刻刪除。如若轉(zhuǎn)載,請注明出處:http://www.dubailvyou.com/uncategorized/40825/